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Interest in quantum computers has been high since Shor [1]
introduced an algorithm for factoring large integers which is much
more efficient than any known algorithm on a classical computer.
The issue we address here is whether quantum computers could,
in addition, solve a wide range of hard optimization problems more
efficiently than a classical computer.

Of particular interest is the set of NP-complete problems, for
which there is no known classical algorithm which will solve the
problem in polynomial time (i.e. a time which increases as a power
of the problem size N) for the worst case instances, and, in general,
for typical instances too. Classically one distinguished between
problems which can be solved in polynomial time, class P, from
those for which the solution can only be verified in polynomial
time, class NP. It is widely believed, but not proved, that P is a
subset of NP and that the NP-complete set is a (different) subset
of NP, see the left part of Fig. 1. Integer factoring is in a set BQP,
which contains those problems which can be solved in polynomial
time on a quantum computer. On account of Shor’s algorithm, it
appears that BQP is larger than P. If BQP were actually to contain
NP-complete, this would give a big additional motivation to exper-
imentalists struggling to overcome the severe technical difficulties
in building a quantum computer. Determining the efficiency of a
quantum computer for solving one particular NP-complete prob-
lem is the objective of this study.

Farhi et al. [2] proposed the Quantum Adiabatic Algorithm
(QAA) as an algorithm for solving optimization problems on a
quantum computer. In this approach, which is related to “quantum
annealing”, one simulates the Hamiltonian in the quantum com-
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puter by an appropriate choice of interactions between the qubits.
One adds to the “problem Hamiltonian”, Hp, whose ground state
we wish to find and which is expressed in terms of Ising spin
variables o7 & 1, a non-commuting driver Hamiltonian, Hp, the
simplest example of which is just a transverse field on each site,
so Hp = —)_;0, where o7 and o} are Pauli spin matrices. At
time t = 0 the system is started off in the ground state of Hp, and
at subsequent times, the amount of Hp is decreased and that of
‘Hp is increased until, at the end of the run at time 7, one only
has Hp. If the process is sufficiently slow that it is adiabatic, the
quantum computer ends up in the ground state of Hp and the
problem is solved. We will denote the time 7 to obtain the cor-
rect answer with some significant probability as the “complexity”
of the problem. The interest is in how the complexity varies with
N; in particular is it polynomial or exponential. The bottleneck will
be at a point where the gap between the ground state and the
first excited state becomes very small during the time-evolution of
the system. This can happen at a quantum phase transition. Early
work [2] on very small sizes, N < 20, that 7 ~ N2, i.e. polynomial
complexity.

To see if polynomial complexity is also true for N — oo or
whether there is a “crossover” to exponential complexity for large
sizes, we have carried out [3,4] quantum Monte Carlo (QMC) simu-
lations on the particular NP-complete “constraint satisfaction prob-
lem” studied by Farhi et al. [2], known as Exact Cover. We chose
instances with a “unique satisfying assignment” and found [4] that
the quantum phase transition turns discontinuous (first order) as
the size increases. The right part of Fig. 1 shows the fraction of in-
stances with a first order transition as a function of size. It seems
likely that this fraction tends to unity for N — oo. It is expected
that the minimum energy gap is exponentially small [5] at a first
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Fig. 1. Left: The probable relationship between complexity classes P, NP, NP-complete, and BQP (see text). The issue addressed in this paper is whether the quantum
complexity class BQP might include NP-complete. Right: Fraction of instances with a first order transition, as a function of size for the Exact Cover problem.

order transition, and hence the running time will be exponentially
long. We are currently modifying the form of the Hamiltonian used
to represent the Exact Cover problem and studying other models,
to see it the first order transition found here is special to Exact
Cover or occurs more generally. Lack of space prevents us from
discussing related work on first order phase transitions [5-7] in
quantum versions of constraint satisfaction problems.
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